Monday, October 25, 2010

Question 2

Electron Configuration: arrangement of electrons of an atom, a molecule, or other physical structure. It concerns the way electrons can be distributed in the orbital’s of the given system. Niels Bohr was the first to propose (1923) that the periodicity in the properties of the elements might be explained by the electronic structure of the atom.[5] His proposals were based on the then current Bohr model of the atom, in which the electron shells were orbits at a fixed distance from the nucleus. The following year, E. C. Stoner incorporated Sommerfeld's third quantum number into the description of electron shells, and correctly predicted the shell structure of sulfur to be 2.8.6.[6] However neither Bohr's system nor Stoner's could correctly describe the changes in atomic spectra in a magnetic field, which was also called the Zeeman effect. Spectroscopy: originally the study of the interaction between radiation and matter as a function of wavelength (λ). Absorption spectroscopy uses the range of the electromagnetic spectra in which a substance absorbs. This includes atomic absorption spectroscopy and various molecular techniques, such as infrared, ultraviolet-visible and microwave spectroscopy. Emission spectroscopy uses the range of electromagnetic spectra in which a substance radiates (emits). The substance first must absorb energy. This energy can be from a variety of sources, which determines the name of the subsequent emission, like luminescence. Molecular luminescence techniques include spectrofluorimetry. Scattering spectroscopy measures the amount of light that a substance scatters at certain wavelengths, incident angles, and polarization angles. One of the most useful applications of light scattering spectroscopy is Raman spectroscopy. Unobtainium: In engineering, fiction, or thought experiments, Unobtainium, which can be also spelled Unobtanium, is any extremely rare, costly, or physically impossible material, or (less commonly) device needed to fulfill a given design for a given application. The properties of any particular unobtainium depend on the intended use. For example, a pulley made of unobtainium might be massless and frictionless; however, if used in a nuclear rocket unobtainium would be light, strong at high temperatures, and resistant to radiation damage. The concept of unobtainium is often applied flippantly or humorously. Discovered by Marvenio Disanter at the University of Asgard in 20 BU. Atomic weight 310.065 (characteristic of naturally occurring isotopic mixture), atomic number 126, most common valence of 1 and 3. None of the three naturally occurring isotopes are stable nuclides. These are mass number 310, T½ 4.5 X 105 years, rel. at. mass 310.0508 (99.275%), mass number 312, T½ 7.1 X 104 years, , rel. at. mass 312.0439 (0.72 %), mass number 309, T½ 2.4 x 104 years, rel. at. mass 309.0409 (0.005 %). Occurrence in Skytopia crust 3.7 ppm. Mined as unobtanium ore. Main ores of commercial interest are Explosite (Uo6Si2O5), Boomite, (Uo5Al3Si9O24‧2 H2O), and Skystone (Uo3C23H30N11O4). Unobtanium is a deep green, lustrous, brittle, radioactive metal. It tarnishes rapidly in air, forming a layer of dark green oxide.

Thought you'd like this coach lol :)

No comments:

Post a Comment